

Inline mixed-flow fans with the air capacity up to 2050 m $^{3} / \mathrm{h}$

- Application

The VENTS TT and VENTS TT PRO fans are featured with wide capabilities and high performance of axial and centrifugal fans and are specifically designed for supply and exhaust ventilation of premises requiring high pressure, powerful air flow and low noise level. The fans are compatible with round air ducts from $\varnothing 100$ to 315 mm . Exhaust ventilation systems based on the VENTS TT fans are the best solution for ventilation of bathrooms and kitchens and other humid premises as well for ventilation of flats, cottages, shops, cafes, etc.

Design

The fan casing is made of high quality and durable materials: ABS plastic for the VENTS TT series or lowflammable polypropylene for the VENTS TT PRO series.

Inline mixed-flow fans with the air capacity up to $1850 \mathrm{~m}^{3} / \mathrm{h}$

The removable impeller and motor block with a terminal box is fixed to the casing assembled with

the spigots by means of special clamps with latches. This makes the fan maintenance fast and easy. The fan maintenance does not require total disassembling. Just
pull out the central block from the casing and perform required servicing. All the models may be equipped with a regulated timer with turn-off delay adjustable from 2 to 30 min .

■ TT PRO design features:

The inlet spigot is equipped with a collector to enable smooth air inlet to the fan. The hemispheric impeller shape and specially profiled blades increase the air flow circular velocity and provide higher pressure and capacity as compared to standard axial fans. The diffuser, the specially profiled impeller and the directing vanes at outlet from the fan casing distribute air flow in such a way as to attain the best combination of high performance, enhanced pressure and low noise.

- Motor

The models of VENTS TT series are equipped with a single phase motor and are available in single or two speed modifications. Some dimension types are available with a more powerful motor (VENTS TT...S). The models of VENTS TT PRO series are equipped with single phased double-speed motors with low energy demand.
The motors have thermal overheating protection to prevent the motor overload. The ball bearings extend the motor service life up to 40000 hrs . at non-stop operation. The motor has IP X4 ingress protection rating.

Designation key:

Series	Air duct diameter	Options
VENTS TT PRO VENTS TT	$\begin{gathered} \text { 100;125;150;160; } \\ 200 ; 250 ; 315 \end{gathered}$	S - high-powered motor. T - adjustable timer from 2 to 30 minutes. \mathbf{U} - speed controller with electronic thermostat and temperature sensor integrated into the air duct. Equipped with power cord and IEC C14 electric plug. Temperature-based operation logic. Un - speed controller with electronic thermostat and external temperature sensor fixed on 4 m cable. Equipped with power cord and IEC C14 electric plug. Temperature-based operation logic. U1 - speed controller with electronic thermostat and temperature sensor integrated into the air duct. Equipped with power cord and IEC C14 electric plug. Timer-based operation logic. U1n - speed controller with electronic thermostat and external temperature sensor fixed on 4 m cable. Equipped with power cord and IEC C14 electric plug. Timer-based operation logic. \mathbf{R} - power cord with IEC C14 electric plug. V - threeposition speed switch (for TT PRO series fans only). P - built-in smooth speed controller and power cord with IEC C14 electric plug.

page 376

page 382
page 368

page 378

Pa

page 394

Speed contro

The double-speed motors are controlled with a built-in switch (V option) or an external switch for multi-speed fans (available upon separate order).
An integrated speed controller (option P), an external TRIAC or autotransformer speed controller (available upon separate order) are used for smooth speed control when connected to the maximum speed terminal.

Mounting

The fans are suitable for mounting at any angle and point of the system. Several fans may be installed inside one system. Several fans may be installed inside one system

- parallel mounting to increase air flow;

TTP kit for parallel connection

- in series mounting to increase operating pressure;

The fan case is equipped with a flat mounting plate to attach the fan to the wall. The mounting box may

be installed in any position to facilitate mounting and wiring

The fan with electronic module of the temperature sensor and speed controller (U option).
The ideal solution for ventilation of the premises with high demands to permanent indoor temperature level, e.g. greenhouses.

The fan with the electronic module of the temperature sensor and the speed controller is used for automatic speed control (air capacity regulation) depending on the air temperature in the ventilation duct or inside a room.

The electronic module of the front panel incorporates:

- the speed control knob for the setting the impeller speed;
- the thermostat control knob for setting the temperature set point.
- thermostat LED light.

Two modifications are possible:

- temperature sensor integrated inside a fan duc
(U/U1 option);
- external temperature sensor fixed on 4 m power cable (Un / U1n option).
\square Operating logic of the fan with the electronic module of the temperature sensor and speed controller
Set the desired air temperature (set point of the thermostat) with the thermostat control knob. Set the required minimum impeller speed (air flow) with the speed control knob. The motor switches to maximum speed (maximum air flow) as the temperature reaches and exceeds the set temperature set point. The motor switches to the pre-set speed as the temperature drops down below the set temperature point.
To avoid the frequent motor switching, e.g. when the temperature in the supply air duct is equal to the threshold value, the switching delay time is activated.
There are two switch delay patterns for various cases:

1. The temperature sensor-based switch delay (U option): the motor switches to higher speed as the air temperature exceeds $2{ }^{\circ} \mathrm{C}$ above the set thermostat set point. The motor revers to the pre-set lower speed as the air temperature drops below the thermostat set point.
This pattern is used to keep air temperature to within $2^{\circ} \mathrm{C}$. In this case the fan switches are rare.
2. The timer-based switch delay (U1 option): as the air temperature exceeds the set thermostat set point, the motor switches to higher speed and the switch delay timer is activated for 5 min . The motor reverts to lower speed as the air temperature drops down below the thermostat set point and only after the timer countdown.
This pattern is used for exact air temperature control. The fan changes its speed more often as compared to the temperature sensor-based switch delay, however the minimum timer interval is 5 minutes

FANS FOR ROUND DUCIS
Technical data:

	TT PRO 100*		TT PRO 125*		TT PRO 150* / TT PRO 160*	
Speed	min	max	min	max	min	max
Voltage [V / 50 / 60 Hz]	1~230		1~230		1~230	
Power [W]	23	25	25	30	42	50
Current [A]	0.10	0.11	0.11	0.13	0.19	0.22
Max. air capacity [$\left.\mathrm{m}^{3} / \mathrm{h}\right]$	180	245	240	350	415	565
RPM [min^{-1}]	2050	2620	1630	2300	1940	2620
Noise level at 3 m [dBA]	27	32	29	34	37	46
Max. transported air temperature [${ }^{\circ} \mathrm{C}$]	60		60		60	
Protection rating	IP X4		IP X4		IP X4	

* Compliant to the ErP-regulation (EC) $327 / 2011$, the power consumption at optimum efficiency is $<125 \mathrm{~W}$.

Sound-power level		Octave-frequency band [Hz$]$								
	Hz	Gen	63	125	250	500	1000	2000	4000	8000
$\mathrm{L}_{\text {wA }}$ to inlet	dBA	67	38	40	52	57	57	63	55	42
$\mathrm{L}_{\text {wA }}$ to outlet	dBA	64	39	40	55	57	58	63	56	44
$L_{\text {wA }}$ to environment	dBA	45	27	30	40	38	43	48	41	25

Technical data:	TT PRO 200*		TT PRO 250		TT PRO 315	
Speed	min	max	min	max	\min	max
Voltage [V / 50 / 60 Hz]	1~230		1~230		1~230	
Power [W]	76	108	125	177	230	320
Current [A]	0.34	0.48	0.54	0.79	1.0	1.42
Max. air capacity [m³ h]	830	1040	1110	1400	1570	2050
RPM [min^{-1}]	1915	2380	1955	2440	1890	2430
Noise level at 3 m [dBA]	45	52	47	55	49	58
Max. transported air temperature [${ }^{\circ} \mathrm{C}$]	60		60		60	
Protection rating	IP X4		IP X4		IP X4	

* Compliant to the ErP-regulation (EC) $327 / 2011$, the power consumption at optimum efficiency is $<125 \mathrm{~W}$.

Sound-power level		Octave-frequency band [Hz$]$								
	Hz	Gen	63	125	250	500	1000	2000	4000	8000
$L_{\text {wA }}$ to inlet	dBA	79	51	62	65	71	74	75	63	55
$\mathrm{L}_{\text {wA }}$ to outlet	dBA	78	53	52	64	72	75	74	64	54
$L_{\text {wa }}$ to environment	dBA	68	47	48	48	60	62	54	49	34

Sound-power level			Octave-frequency band [Hz$]$								
		Hz	Gen	63	125	250	500	1000	2000	4000	8000
$L_{\text {wA }}$ to inlet		dBA	82	55	53	66	75	82	80	67	58
$L_{\text {wA }}$ to outle		dBA	84	57	58	69	78	80	78	67	57
$L_{\text {wA }}$ to envir	ment	dBA	72	51	51	53	62	72	61	55	39
П, [\%]	MC	EC	N	VSD	[kW]	[A]	[m^{3}		Pa]	[RPM]	SR
34.4	A	Static	50	No	0.322	1.45	99		92	2380	1

Fan overall dimensions:

Type	Dimensions [mm]				
	ØD	B	H	L	Weight [kg]
TT PRO 100	97	195.8	226	302.5	1.75
TT PRO 125	123	195.6	226	258.5	2.15
TT PRO 150	148	220.1	247	289	2.3
TT PRO 160	158	220.1	247	289	3.25
TT PRO 200	199	239	261	295.5	3.95
TT PRO 250	247	287	323	383	7.8
TT PRO 315	310	362	408	445	11.95

FANS FOR ROUND DUCIS
Technical data:

	TT 100*		TT 125 *		TT 125 S*	
Speed	min	\max	min	max	min	max
Voltage [V / 50 / 60 Hz]	1~230		1~230		1~230	
Power [W]	21	33	23	37	28	54
Current [A]	0.11	0.21	0.18	0.27	0.12	0.16
Max. air capacity [m ${ }^{3} / \mathrm{h}$]	145	187	220	280	240	320
RPM [min^{-1}]	2180	2385	1950	2455	1850	2510
Noise level at 3 m [dBA]	27	36	28	37	31	42
Max. transported air temperature [${ }^{\circ} \mathrm{C}$]	60		60		60	
Protection rating	IP X4		IP X4		IP X4	

* Compliant to the ErP-regulation (EC) $327 / 2011$, the power consumption at optimum efficiency is $<125 \mathrm{~W}$.

VENTS TT

Sound-power level		Octave-frequency band [Hz]								
	Hz	Gen	63	125	250	500	1000	2000	4000	8000
$L_{\text {wA }}$ to inlet	dBA	60	31	34	49	51	57	60	46	38
$L_{\text {wa }}$ to outlet	dBA	61	36	32	51	52	58	56	48	37
L_{wA} to environment	dBA	50	27	29	36	41	46	37	33	28

Technical data:

	TT 150 / TT 160*		TT 250*	TT 315
Speed	min	max	-	-
Voltage [V / $50 / 60 \mathrm{~Hz}$]	1~230		1~230	1~230
Power [W]	30	60	120	314
Current [A]	0.17	0.27	0.52	1.42
Max. air capacity [m ${ }^{3} / \mathrm{h}$]	405	520	950	1850
RPM [min^{-1}]	1680	2460	1840	2335
Noise level at 3 m [dBA]	33	44	45	48
Max. transported air temperature [${ }^{\circ} \mathrm{C}$]			60	60
Protection rating			IP X4	IP X4

* Compliant to the ErP-regulation (EC) $327 / 2011$, the power consumption at optimum efficiency is $<125 \mathrm{~W}$.

Fan overall dimensions:

Type	Dimensions [mm]				
	ØD	B	H	L	Weight $[\mathrm{kg}]$
TT 100	96	167	190	246	1.45
TT 125	123	167	190	246	1.35
TT 125 S	123	223	250	295	3.14
TT 150	146	223	250	295	2.65
TT 160	158	233	250	295	2.65
TT 250	247	287	323	383	6.9
TT 315	310	362	408	445	10.35

